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Company Overview

• Polatomic develops helium magnetometers for military, space, and 
geophysical applications.

• Business established in 1982.

• Main office is in Richardson, Texas.

• Polatomic maintains a Magnetic Test Facility (former U.S. Coast and 
Geodetic Survey Magnetic Observatory) at the University of Texas at Dallas. 

• Multiple NASA and NAVY contracts funding development of laser-pumped 
vector and scalar helium magnetometers.



MVLM Description

•Helium magnetometer with laser pumping.

•Optically pumped He4 in metastable triplet state.

•Capable of both vector and scalar measurements.

•Dynamic Range: ±100,000 nT

•Scalar Mode Accuracy: < ±1 nT

•Vector Mode Accuracy: < ±100 nT

•Accuracy with Self-Calibration: ± 1 nT

•Sensitivity: 10 pT / √Hz

•Sensor Unit Size: 6 x 6 x 12 cm, 0.6 kg

•Electronics Unit Size: 15 x 20 x 6 cm, 1.8 kg

•5 W Operation, 0.5 W Standby 

MVLM Sensor Unit

MVLM Electronics Unit



Earth Science Applications

• Internal field from sources within the solid Earth. 

• External field driven by interactions with solar wind and solar radiation.

Earth’s Magnetic Field

• Support models to determine geomagnetic field and its variability.

• Internal dynamics of the Earth's core

• Structure and dynamics of the lithosphere and crust.

• Interaction between Earth's magnetic field and the solar wind.

• Influences on Earth's climate.

Magnetic Field Measurements



Helium Magnetometer Heritage

• Mariner 4 - JPL/TI - Vector - Mars

• Mariner 5 - JPL/TI - Vector - Mars, Venus

• AN/ASQ-81 - TI – Scalar – U.S. Navy

• Pioneer 10 - JPL - Vector - Jupiter

• Pioneer 11 - JPL - Vector - Jupiter, Saturn

• ISEE-3 – JPL – Vector - Cometary

• Ulysses – JPL – Vector - Jupiter, Solar Polar

• AN/ASQ-208 - TI - Scalar - U.S. Navy

• Cassini - JPL/Polatomic - Vector/Scalar – Venus, Jupiter, Saturn

• SAC-C - JPL/Polatomic - Scalar - Earth

• P-2000 - Polatomic – Scalar - U.S. Navy

• HTG - Polatomic – Vector - U.S. Navy

• AN/ASQ-233 – Polatomic - Scalar - U.S. Navy
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1980’s

1990’s

2000’s



He4 Cell Sensing Element

• Glass cell contains He4 at low pressure (1.5 Torr).

• RF discharge produces metastable 23S1 ground state.

• External ambient field B0 splits energy into three Zeeman levels m= -1,0,+1.

• Separation energy ∆E = hν0 where ν0 = (γe / 2π) B0  and γe / 2π = 28.0249540 Hz/nT

• Metastables in 23S1 level are atomic magnets.
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Optical Pumping

• Pumping produces non-equilibrium distribution of atoms among different energy levels.

• m= -1,0,+1 sublevels are equally populated in thermal equilibrium. 

• m= -1 has high absorption probability for circular polarized 1083 nm laser radiation.

• 23P0 atoms decay to m sublevels at equal rates.

• Laser pumping produces magnetic moment M opposite field as atoms shift to m= 0,+1.
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Vector Mode Operation
Bias Field Nulling (BFN)
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• Metastable helium subjected to circular polarized radiation and rotating magnetic sweep field BS.

• Optical pumping efficiency and absorption depends on angle between field and optical axis.

• Absorption ∝ sin2 θ, maximum absorption at θ = π/2 and 3π/2.



Vector Mode Implementation
Bias Field Nulling (BFN)

• Absorption ∝ sin2 θ.

• External ambient field B0 causes phase shift of signal.

• Feedback steady field BF to null ambient field.

• System maintains maximum absorption at θ=π/2 and 3π/2.

• Feedback currents IF are a measure of the ambient field components.
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Scalar Mode Operation
Optically-Driven Spin Precession (OSP)

OSP Resonance Curve
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• Metastable helium subjected to pulsed circular polarized radiation.

• Optical pumping efficiency increases at resonance (Larmor frequency) ν0 .

• ν0 = (γe / 2π) B0  and γe / 2π = 28.0249540 Hz/nT.

• B0 = ν0 / (γe / 2π) = 1.42 x 106 Hz / 28.0249540 Hz/nT = 50,669 nT.



Scalar Mode Implementation
Optically-Driven Spin Precession (OSP)
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• Apply periodic sweep to RF oscillator.

• Causes periodic modulation of detector output.

• Phase synchronous demodulation determines ν0 .



MVLM Block Diagram

• BFN vector mode and OSP scalar mode using single sensor.

• Simple design concept provides commonality between vector and scalar components.

• Sensor Unit has no active electronics.

• Component selection allowing future transition to radiation-hardened parts.
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MVLM Key Technical Issues
BFN Coil System

• Effective dynamic range of 26-bits required.

• Over-sampling technique using 16-bit DAC successfully tested.

Exciter System

• Piezoelectric transformer option needs environmental testing (temperature, vacuum, 
radiation, reliability).

• High stability low-power RF system with air-core ignition transformer designed.

Laser Pumping System

• Laser needs environmental testing for space qualification.

• Motion of fiber causes polarization and intensity noise problems.

• PM fiber being evaluated and circular/elliptical polarization tests underway.

IR Detection System

• IR detector needs environmental testing for space qualification.



NASA Definition of Technology Readiness Levels

TRL 1 Basic principles observed and reported.

TRL 2 Technology concept and application formulated.

TRL 3 Analytical and experimental critical function and proof-of-concept.

TRL 4 Component and breadboard validation in laboratory environment.

TRL 5 Component and breadboard validation in relevant environment.

TRL 6 System prototype demonstration in a relevant environment (ground or space).

TRL 7 System prototype demonstration in a space environment.

TRL 8 Actual system completed and “flight qualified” through test and demonstration.

TRL 9 Actual system “flight proven” through successful mission operations.



MVLM TRL Assessment Summary
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MVLM Sensor Unit Breadboard Design

•Sensor Unit size is 6 x 6 x 12 cm.

•5 cm diameter coil system.

•6 cm3 internal cell volume compared to 48 cm3 on lamp-pumped helium magnetometers.

•Breadboard system will accept free-space optics or fiber-optics.



MVLM Calibration Requirements

Calibration

• Nine coefficients required to calibrate vector magnetometer.

• Three offsets in absence of magnetic field.

• Three scale factors (gains) for normalization of axes.

• Three non-orthogonality angles which build up orthogonal system in sensor.

Implementation

• Vector mode measurements made using BFN technique with 0.1% accuracy.

• Scalar mode measurements made using OSP technique with 0.001% accuracy. 

• Multiplex vector and scalar measurements for different sensor orientations.

• Acquire data and calculate nine calibration coefficients.



MVLM Innovations

• Single-line laser pumping permits omni-directional vector and scalar 
measurements with smaller cell compared to lamp-pumped cell.

• Laser allows pump source to be located in electronics unit providing 
further sensor miniaturization.

• Scalar mode can be integrated into instrument with no additional 
sensor hardware.

• Vector calibration achieved by sampling vector field components
and reference scalar values in the same helium cell.

• Sensor has no permeable materials and has high radiation tolerance.

• Higher accuracy, lower offsets, better stability, and more sensitive 
than fluxgates.

• MVLM instrument replaces three fluxgate magnetometers and 
reference scalar magnetometer which reduces power, payload mass,
volume, and cost .



MVLM Year 2 Quad Chart
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MVLM Sensor Unit

• Update Flight Proven VHM Design with Laser Pump Source
• Reduce He4 Cell Size &, Incorporate Fiber-Optics
• Utilize Scalar Mode Inherent Accuracy for Self-Calibration
• Miniaturize & Rad-Harden Electronics Unit

• Vector Helium Magnetometer (VHM) Design
• Laser-Pumped Miniature He4 Cell Sensing Element
• Miniature & Rad-Hard Electronics Unit
• Dynamic Range: ±100,000 nT
• Accuracy with Self-Calibration: ±1 nT
• Sensitivity: 0.01 nT / √Hz
• Sensor Size & Mass: 6x6x12 cm, 600 g
• Power: 5 W

• PI: Robert E. Slocum, Ph.D., Polatomic, Inc.
• Program Manager: Larry J. Ryan, Ph.D., Polatomic, Inc.
• No Co-I’s/Partners

• Complete Laboratory Breadboard Fabrication…..…......Aug-2003
• Interim Review...…………………………….……….…Aug-2003
• Complete Operational Tests.…………….….…….….....Feb-2004
• Annual Review/Final Report…………………………...Feb-2004

• Airborne & Space-Borne Magnetic Field Measurements
• Earth Science & Planetary Science Missions

Description & Objectives

Approach

Co-I’s/Partners

Miniature Vector Laser Magnetometer

Schedule & Deliverables

Application/Mission

PI: Robert E. Slocum/Polatomic, Inc.

ESTO
Instrument Incubator Program


